

Espace-Dev

Leveraging Knowledge Graphs for Earth System Dataset Discovery

Vincent Armant, Felipe Vargas-Rojas, Victoria Agazzi, Jean-Christophe Desconnets, Isabelle Mougenot, Valentina Beretta, Stephane Debard, Danai Symeonidou, Amira Mouakher, Joris Guérin, Thibault Catry, Emmanuel Roux

Vincent Armant

SemWeb.Pro 2025

Context: Earth System Data Discovery

Data Terra Research Infrastructure

Data Hubs:

Atmosphere

Earth

Contexte: Earth System Data Discovery

Data Terra Research Infrastructure

Data Hubs:

Earth

Ocean

Atmosphere

Continental

Guide of Good Practice, but not really followed

Not suitable to represent various dimensions of observation

Object or Features of Interest,

observable properties, sampling protocol

Contexte: Earth System Data Discovery

Data Terra Research Infrastructure

Data Hubs:

Ocean

Guide of Good Practice not followed

Not suitable to represent various dimensions of observation

Object or Features of Interest,

observable properties, sampling protocol

Semantic and structural heterogeneities

Obstacles for conducting pluridisciplinary studies involving data from different hubs

UCMM: PluriDisciplinary MetaData Integration Model

Data Terra Research Infrastructure

Data Hubs:

Atmosphere

Continental Surface

Solide Earth

User Centric Metadata Model (UCMM)

MetaData integration model (application ontology)
focusing on observation paradigm in pluridisciplinary context

- Eases dataset discovery in multi-source setting
- Relies on SOSA (to represent various dimension of observation)
- Bridges SOSA and DCAT (to represent data catalog)
- Reuses other well known standard : CPM, SWEET, REPR, SKOS, TIME

Example: Knowledge Formalisation

```
Ontology: (computer science)
        A set of concepts organised in a graph whose relationships can be semantic, compositional or inheritance.
Ontology: (Data Model + Knowledge Graph)
        The phenomena of 'climate change' and 'vector-borne diseases' are studied in the 'Sahel' and 'Amazon' respectively.
                           Phenomena p1
                                                   Phenomana p2
                                                                      relation r1
                                                                                                  region r2
                                                                                     region r1
                                  subjet
                                                                                                  Region name
ex: Formal Description
                                                inherent properties
             PHENOMENON: The class representing phenomena,
Data model.
Schema.
             REGION: The class representing regions,
TBox
              p isStudiedIn r: the relation stating that p \in PHENOMENON is studied in r \in REGION,
             o isA c: the relation stating that an object o has the type c,
              p hasSubject I : the property of a PHENOMENON stating that p ∈ PHENOMENON o has subject I ∈ STRING.
             \ regionName n: the property of a REGION stating that r \in PHENOMENON has region name n \in STRING
Knowledge
             p1 isA PHENOMENON. p1 hasSubject "climate change"
Graph,
Fact.
              p2 isA PHENOMENON, p2 hasSubject "vector-borne diseases"
ABox.
             r1 isA REGION, r1 regionName "Sahel",
statements
              r2 isA REGION, r1 regionName "Amazon",
             p1 isStudiedIn r1, p2 isStudiedIn r2,
```

Example of UCMM instance: ISAS-SSS

MetaDAta description ISAS-SSS dataset (portail ODATIS)

ISAS-SSS (In situ Sea Surface Salinity gridded fields)

- -Observations from free-drifting profiling floats
- -measures up to 2000 m depth

Declaration of namespaces

Prefixes:

i1: http://example.org/IASS-SSS#

dcat: http://www.w3.org/ns/dcat#

dct: http://purl.org/dc/terms/

geo: http://www.opengis.net/ont/geosparql#

repr : http://sweetontology.net/repr/

dtesv: https://terra-vocabulary.org/ncl/FAIR-Incubator/earthsciencevariables/

dtfoi: https://terra-vocabulary.org/ncl/FAIR-Incubator/earthfeaturetype/

UCMM is an application profile (mainly reuse existing standard)

skos: http://www.w3.org/2004/02/skos/core#

sosa: http://www.w3.org/ns/sosa/

ucmm: http://purl.org/ucmm#

time: http://www.w3.org/2006/time#

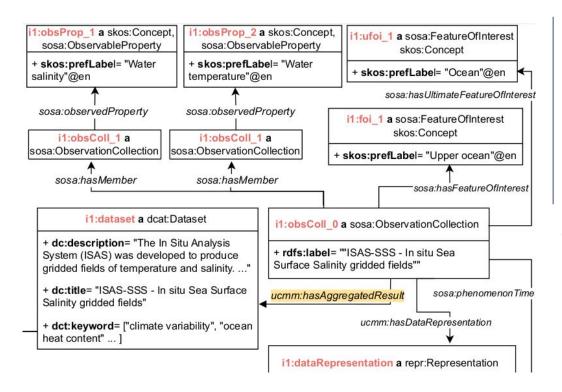
UCMM: PluriDisciplinary MetaData Integration Model

Data Terra Research Infrastructure

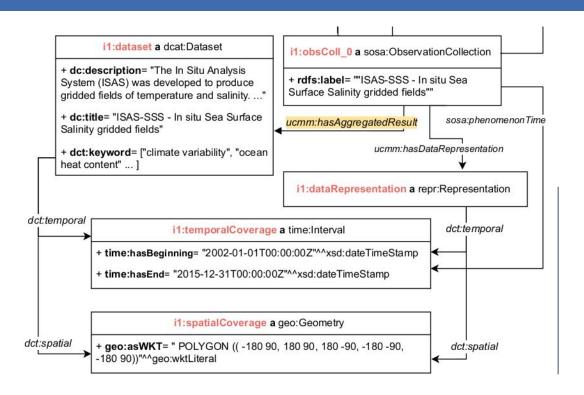
Data Hubs:

Atmosphere

Continental

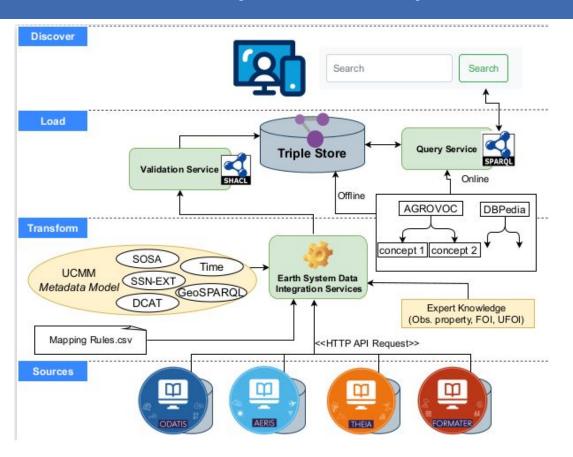

Solide Earth

- Eases dataset discovery in multi-source setting
- Relies on SOSA (to represent various dimension of observation)
- Bridges SOSA and DCAT (to represent data catalog)
- Reuses other well known standard : CPM, SWEET, REPR, SKOS, TIME


Example of UCMM instance: ISAS-SSS

UCMM is based on SOSA Observation Paradigm.

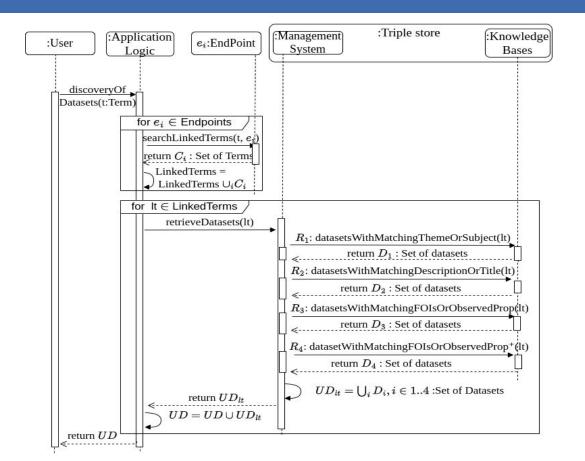
SOSA : Sensor, Observation, Sampler and Actuator


Example of UCMM instance: ISAS-SSS

UCMM also relies on DCAT for describing catalogue data and other standard

Data Catalog Vocabulary

Architecture of the Earth System Data Open Discovery



Search engine demo

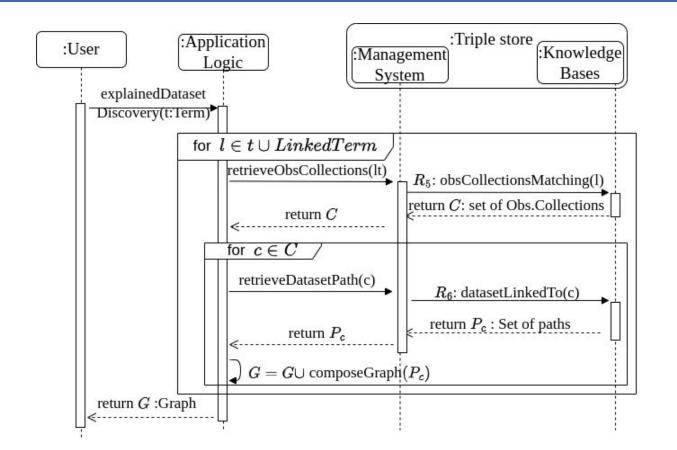
Earth System Dataset Open Discovery

https://purl.org/earthsystemdatasetdiscovery/

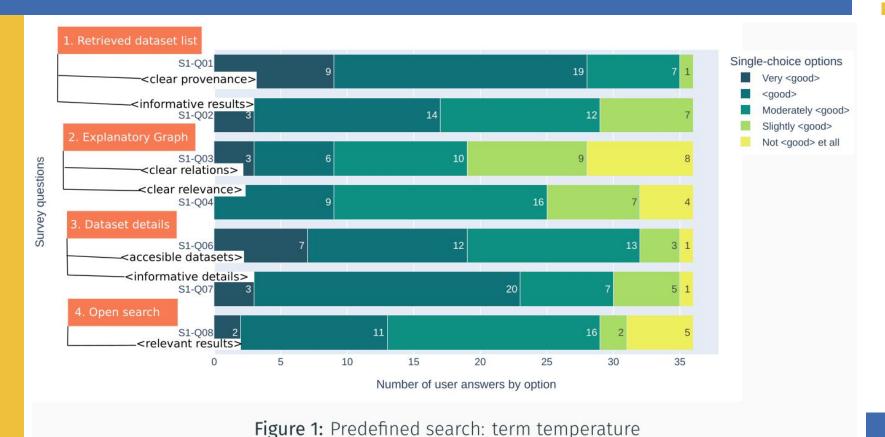
Open Discovery of Datasets using external resources

Impact: Improving the Retrieval of Pluridisciplinary Datasets

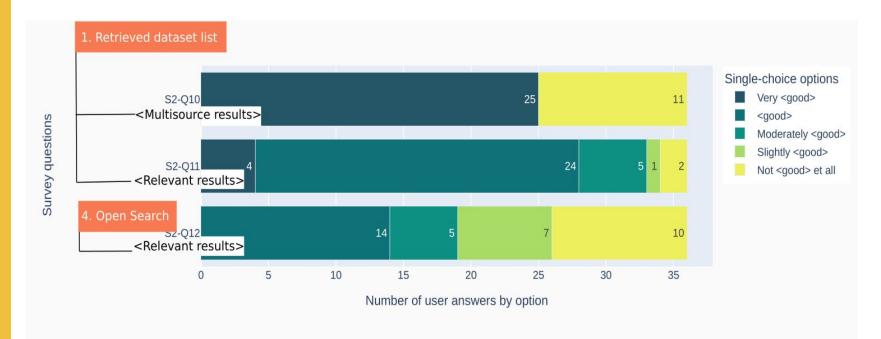
	DATA HUB Knowledge Graphs					
	ODATIS	THEIA-LAND	THEIA-HYDRO	FORMATER	AERIS	merged KG
# datasets	10930	337	24594	255	2786	38902
# triples	669857	18071	1032948	13263	53493	1720876


Impact: Improving the Retrieval of Pluridisciplinary Datasets

	ODATIS	THEIA-LAND	THEIA-HYDRO	FORMATER	AERIS	merged KG	
# datasets	10930	337	24594	255	2786	38902	
# triples	669857	18071	1032948	13263	53493	1720876	
	Number of retrieved datasets						
Search term	ODATIS	THEIA-LAND	THEIA-HYDRO	FORMATER	AERIS	merged KG	
temperature	1149	80	0	33	378	1640	
air	1788	70	25	25	491	2399	
water	2427	189	24594	28	200	27438	
carbon	268	40	0	2	99	409	
conductivity	54	70	0	0	9	133	


Impact: Improving the Retrieval of Pluridisciplinary Datasets

	ODATIS	THEIA-LAND	THEIA-HYDRO	FORMATER	AERIS	merged KG		
# datasets	10930	337	24594	255	2786	38902		
# triples	669857	18071	1032948	13263	53493	1720876		
	Number of retrieved datasets							
Search term	ODATIS	THEIA-LAND	THEIA-HYDRO	FORMATER	AERIS	merged KG		
temperature	1149	80	0	33	378	1640		
air	1788	70	25	25	491	2399		
water	2427	189	24594	28	200	27438		
carbon	268	40	0	2	99	409		
conductivity	54	70	0	0	9	133		
	Dataset gain ratio							
Search term	ODATIS	THEIA-LAND	THEIA-HYDRO	FORMATER	AERIS	merged KG		
temperature	0.43	19.50	21	48.70	3.34	-		
air	0.34	33.27	94.96	94.96	3.89	-		
water	10.31	144.17	0.12	978.93	136.19	-		
carbon	0.53	9.23		203.50	3.13	-		
conductivity	1.46	0.90	-	-	13.78	(-		


Explaining discovery (dealing with Observations Collections)

Uptake: User Experience

Uptake: User Experience

Figure 2: User defined search. E.g., Biodiversity, Ground deformation, Marine litter, Precipitation, Water level, currents, fishing vessels, health, metagenomics, rain, tropical rainforest, coral reef

Conclusion

- UCMM offered more precise annotations for pluridisplinary datasets in the Earth System domain and surpasses ISO 19115
- Multisource and pluridisplinary datasets were integrated in the ESDD system and we quantified the gain ratio
- The results of the user survey showed positive acceptance by the end users and room for improving concerning the explanatory graph

What is next?

- Verbalising the explanatory graph (LLMs)
- · Automate the integration of datasets in the observation level
- Expanding the search scope beyond datasets (algorithms, code, reports, ...)

Thanks for your Attention

Demo:

Earth System Dataset Open Discovery

https://purl.org/earthsystemdatasetdiscovery/

ISWC 2024 article:

Leveraging Knowledge Graphs for Earth System Dataset Discovery

Vincent Armant, Felipe Vargas-Rojas, Victoria Agazzi, Jean-Christophe Desconnets, Isabelle Mougenot, Valentina Beretta, Stephane Debard, Danai Symeonidou, Amira Mouakher, Joris Guérin, Thibault Catry, Emmanuel Roux

vincent.armant@ird.fr

Open for new collaborations, answer to calls, CIFRE partnerships